Abstracts

ReAlta Life Sciences, Inc. has a strong series of publications in peer-reviewed scientific journals.


Case Rep Hematol. 2019 Jan 30;2019:4105653. doi: 10.1155/2019/4105653 eCollection 2019

Ceftriaxone-Induced Immune Hemolytic Anemia: In Vitro Reversal with Peptide Inhibitor of Complement C1 (PIC1).

AUTHORS:

Cunnion KM, Feagin LM, Chicella MF, Kaszowski CL, Hair PS, Price J, Owen WC.

ABSTRACT:

We report a case of ceftriaxone-induced immune hemolytic anemia in a 10-year-old with chronic active Epstein-Barr virus disease and hemophagocytic lymphohistiocytosis. After chemotherapy, she became febrile and received ceftriaxone. She rapidly developed respiratory failure and anemia. Her direct antiglobulin test was positive for IgG and C3. To confirm this was ceftriaxone-induced complement-mediated hemolysis, we adapted the complement hemolysis using human erythrocytes (CHUHE) assay by adding exogenous ceftriaxone to the patient's serum which enhanced lysis of her erythrocytes. We confirmed that ceftriaxone initiated a classical complement pathway-mediated hemolysis by in vitro reversal with peptide inhibitor of complement C1 (PIC1).

PMID: 30838143 PMCID: PMC6374879 DOI: 10.1155/2019/4105653

PLoS One. 2018 Mar 2;13(3):e0193931. doi: 10.1371/journal.pone.0193931. eCollection 2018.

Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT).

AUTHORS:

Gregory Rivera M, Hair PS, Cunnion KM, Krishna NK.

ABSTRACT:

Reactive oxygen species (ROS) are natural byproducts of oxidative respiration that are toxic to organs and tissues. To mitigate ROS damage, organisms have evolved a variety of antioxidant systems to counteract these harmful molecules, however in certain pathological conditions these protective mechanisms can be overwhelmed. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) mitigates peroxidase activity of the heme bearing proteins myeloperoxidase, hemoglobin, and myoglobin through a reversible process. To determine if this property of PIC1 was antioxidant in nature, we tested PIC1 in a number of well-established antioxidant assays. PIC1 showed dose-dependent antioxidant activity in a total antioxidant (TAC) assay, hydroxyl radical antioxidant capacity (HORAC) assay, oxygen radical antioxidant capacity (ORAC) assay as well as the thiobarbituric acid reactive substances (TBARS) assay to screen for PIC1 antioxidant activity in human plasma. The antioxidant activity of PIC1 in the TAC assay, as well as the HORAC/ORAC assay demonstrated that this peptide acts via the single electron transport (SET) and hydrogen atom transfer (HAT) mechanisms, respectively. Consistent with this mechanism of action, PIC1 did not show activity in a metal chelating activity (MCA) assay. PIC1 contains two vicinal cysteine residues and displayed similar antioxidant activity to the well characterized cysteine-containing tripeptide antioxidant molecule glutathione (GSH). Consistent with the role of the cysteine residues in the antioxidant activity of PIC1, oxidation of these residues significantly abrogated antioxidant activity. These results demonstrate that in addition to its described complement inhibiting activity, PIC1 displays in vitro antioxidant activity.

PMID: 29499069 PMCID: PMC5834197 DOI: 10.1371/journal.pone.0193931

(1) Int J Pept Res Therap. http://doi.org/10.1007/s10989-017-9651-z

Peptide Inhibitor of Complement C1 (PIC1) Inhibits Growth of Pathogenic Bacteria.

AUTHORS:

Hair PS, Gregory Rivera M, Enos AI, Pearsall SE, Sharp JA, Yousefieh N, Lattanzio FA, Krishna NK, Cunnion KM

ABSTRACT:

Peptide Inhibitor of Complement C1 (PIC1) is a family of 15 amino acid peptides that inhibit complement activation via the classical and lectin pathways and inhibit myeloperoxidase. PIC1 peptides were originally derived from a region of limited homology with defensin human neutrophil peptide 1 (HNP-1). Despite having undergone extensive rearrangements of amino acid sequence subsequently, PIC1 peptides retain the defensin-like characteristics of being cysteine rich and amphiphilic. To date, defensin-like antimicrobial activity for PIC1 has not been explored. Here we report the antimicrobial activity of PIC1 for multiple pathogenic bacteria tested in minimum inhibitory concentration (MIC)-type assays. PIC1variant PA-dPEG24 was found to have antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Neisseria meningitidis, Neisseria gonorrhoeae, Gardnerella vaginalis, and Prevotella bivia. Confocal microscopy demonstrated PIC1 localized to the surface of P. aeruginosa and S. aureus consistent with the defensins. Testing PIC1 variants with amino acid substitutions revealed differences in complement inhibition and antimicrobial effects suggesting these occur via independent mechanisms. PIC1 inhibited P. aeruginosa growth in normal human serum suggesting the antimicrobial effect was dominant versus the survival benefit resulting from complement inhibition. In summary, these experiments demonstrate that PIC1 peptides have broad antimicrobial activity against pathogenic bacteria similar to defensins.

(3) PLoS One. 2017 Jan 30;12(1):e0170203. doi: 10.1371/journal.pone.0170203. eCollection 2017.

Inhibition of Myeloperoxidase Activity in Cystic Fibrosis Sputum by Peptide Inhibitor of Complement C1 (PIC1).

AUTHORS:

Hair PS, Sass LA, Krishna NK, Cunnion KM

ABSTRACT:

Myeloperoxidase is the major peroxidase enzyme in neutrophil granules and implicated in contributing to inflammatory lung damage in cystic fibrosis. Free myeloperoxidase is present in cystic fibrosis lung fluid and generates hypochlorous acid. Here we report a new inhibitor of myeloperoxidase activity, Peptide Inhibitor of Complement C1 (PIC1). Using TMB as the oxidizing substrate, PIC1 inhibited myeloperoxidase activity in cystic fibrosis sputum soluble fractions by an average of a 3.4-fold decrease (P = 0.02). PIC1 also dose-dependently inhibited myeloperoxidase activity in a neutrophil lysate or purified myeloperoxidase by up to 28-fold (P < 0.001). PIC1 inhibited myeloperoxidase activity similarly, on a molar basis, as the specific myeloperoxidase inhibitor 4-Aminobenzoic acid hydrazide (ABAH) for various oxidizing substrates. PIC1 was able to protect the heme ring of myeloperoxidase from destruction by NaOCl, assayed by spectral analysis. PIC1 incubated with oxidized TMB reversed the oxidation state of TMB, as measured by absorbance at 450 nm, with a 20-fold reduction in oxidized TMB (P = 0.02). This result was consistent with an antioxidant mechanism for PIC1. In summary, PIC1 inhibits the peroxidase activity of myeloperoxidase in CF sputum likely via an antioxidant mechanism.

PMID: 28135312 PMCID: PMC5279725 DOI: 10.1371/journal.pone.0170203

(5) Transfusion. 2017 Mar;57(3):517-524. doi: 10.1111/trf.13948. Epub 2016 Dec 20.

Discriminating the hemolytic risk of blood type A plasmas using the complement hemolysis using human erythrocytes (CHUHE) assay.

AUTHORS:

Cunnion KM, Hair PS, Krishna NK, Sass MA, Enos CW, Whitley PH, Maes LY, Goldberg CL.

ABSTRACT BACKGROUND:

Diabetic non-healing wounds are a major clinical problem. The mechanisms leading to poor wound healing in diabetes are multifactorial but unresolved inflammation may be a major contributing factor. The complement system (CS) is the most potent inflammatory cascade in humans and contributes to poor wound healing in animal models. Signal transducer and activator of transcription 4 (STAT4) is a transcription factor expressed in immune and adipose cells and contributes to upregulation of some inflammatory chemokines and cytokines. Persistent CS and STAT4 expression in diabetic wounds may thus contribute to chronic inflammation and delayed healing. The purpose of this study was to characterize CS and STAT4 in early diabetic wounds using db/db mice as a diabetic skin wound model. The CS was found to be activated early in the diabetic wounds as demonstrated by increased anaphylatoxin C5a in wound fluid and C3-fragment deposition by immunostaining. These changes were associated with a 76% increase in nucleated cells in the wounds of db/db mice vs.

CONTROLS:

The novel classical CS inhibitor, Peptide Inhibitor of Complement C1 (PIC1) reduced inflammation when added directly or saturated in an acellular skin scaffold, as reflected by reduced CS components and leukocyte infiltration. A significant increase in expression of STAT4 and the downstream macrophage chemokine CCL2 and its receptor CCR2 were also found in the early wounds of db/db mice compared to non-diabetic controls. These studies provide evidence for two new promising targets to reduce unresolved inflammation and to improve healing of diabetic skin wounds.

PMID: 28107529 PMCID: PMC5249255 DOI: 10.1371/journal.pone.0170500

(8) PLoS One. 2015 Dec 7;10(12):e0144723. doi: 10.1371/journal.pone.0144723. eCollection 2015.

Complement Effectors of Inflammation in Cystic Fibrosis Lung Fluid Correlate with Clinical Measures of Disease.

AUTHORS:

Sass LA, Hair PS, Perkins AM, Shah TA, Krishna NK, Cunnion KM1.

ABSTRACT:

In cystic fibrosis (CF), lung damage is mediated by a cycle of obstruction, infection, and inflammation. Here we explored complement inflammatory effectors in CF lung fluid. In this study soluble fractions (sols) from sputum samples of 15 CF patients were assayed for complement effectors and analyzed with clinical measurements. The pro-inflammatory peptide C5a was increased 4.8-fold (P = 0.04) in CF sols compared with controls. Incubation of CF sols with P. aeruginosa or S. aureus increased C5a concentration 2.3-fold (P = 0.02). A peptide inhibitor of complement C1 (PIC1) completely blocked the increase in C5a concentration from P. aeruginosa in CF sol in vitro (P = 0.001). C5a concentration in CF sol correlated inversely with body mass index (BMI) percentile in children (r = -0.77, P = 0.04). C3a, which has anti-inflammatory effects, correlated positively with FEV1% predicted (rs = 0.63, P = 0.02). These results suggest that complement effectors may significantly impact inflammation in CF lung fluid.

PMID: 26642048 PMCID: PMC4671727 DOI: 10.1371/journal.pone.0144723

(11) J Transl Med. 2014 Jun 24;12:181. doi: 10.1186/1479-5876-12-181.

Clinical hypothermia temperatures increase complement activation and cell destruction via the classical pathway.

AUTHORS:

Shah TA, Mauriello CT, Hair PS, Sandhu A, Stolz MP, Bass WT, Krishna NK, Cunnion KM.

ABSTRACT BACKGROUND:

Therapeutic hypothermia is a treatment modality that is increasingly used to improve clinical neurological outcomes for ischemia-reperfusion injury-mediated diseases. Antibody-initiated classical complement pathway activation has been shown to contribute to ischemia-reperfusion injury in multiple disease processes. However, how therapeutic hypothermia affects complement activation is unknown. Our goal was to measure the independent effect of temperature on complement activation, and more specifically, examine the relationship between clinical hypothermia temperatures (31-33°C), and complement activation.

METHODS:

Antibody-sensitized erythrocytes were used to assay complement activation at temperatures ranging from 0-41°C. Individual complement pathway components were assayed by ELISA, Western blot, and quantitative dot blot. Peptide Inhibitor of complement C1 (PIC1) was used to specifically inhibit activation of C1.

RESULTS:

Antibody-initiated complement activation resulting in eukaryotic cell lysis was increased by 2-fold at 31°C compared with 37°C. Antibody-initiated complement activation in human serum increased as temperature decreased from 37°C until dramatically decreasing at 13°C. Quantitation of individual complement components showed significantly increased activation of C4, C3, and C5 at clinical hypothermia temperatures. In contrast, C1s activation by heat-aggregated IgG decreased at therapeutic hypothermia temperatures consistent with decreased enzymatic activity at lower temperatures. However, C1q binding to antibody-coated erythrocytes increased at lower temperatures, suggesting that increased classical complement pathway activation is mediated by increased C1 binding at therapeutic hypothermia temperatures. PIC1 inhibited hypothermia-enhanced complement-mediated cell lysis at 31°C by up to 60% (P = 0.001) in a dose dependent manner.

CONCLUSIONS:

In summary, therapeutic hypothermia temperatures increased antibody-initiated complement activation and eukaryotic cell destruction suggesting that the benefits of therapeutic hypothermia may be mediated via other mechanisms. Antibody-initiated complement activation has been shown to contribute to ischemia-reperfusion injury in several animal models, suggesting that for diseases with this mechanism hypothermia-enhanced complement activation may partially attenuate the benefits of therapeutic hypothermia.

PMID: 24962100 PMCID: PMC4079622 DOI: 10.1186/1479-5876-12-181

(13) Mol Immunol. 2010 Nov-Dec;48(1-3):305-13. doi: 10.1016/j.molimm.2010.07.012. Epub 2010 Aug 21.

Potent inhibition of the classical pathway of complement by a novel C1q-binding peptide derived from the human astrovirus coat protein.

AUTHORS:

Gronemus JQ, Hair PS, Crawford KB, Nyalwidhe JO, Cunnion KM, Krishna NK.

ABSTRACT:

Previous work from our laboratories has demonstrated that purified, recombinant human astrovirus coat protein (HAstV CP) binds C1q and mannose-binding lectin (MBL) inhibiting activation of the classical and lectin pathways of complement, respectively. Analysis of the 787 amino acid CP molecule revealed that residues 79-139 share limited sequence homology with human neutrophil defensin-1 (HNP-1), a molecule previously demonstrated to bind C1q and MBL, inhibiting activation of the classical and lectin pathways of complement, respectively. A 30 amino acid peptide derived from this region of the CP molecule competitively inhibited the binding of wild-type CP to C1q. The parent peptide and various derivatives were subsequently assayed for C1q binding, inhibition of C1 and C4 activation as well as suppression of complement activation in hemolytic assays. The parent peptide and several derivatives inhibited complement activation in these functional assays to varying degrees. One peptide derivative in particular (E23A) displayed superior inhibition of complement activation in multiple assays of classical complement pathway activation. Further analysis revealed homology to a plant defensin allowing development of a proposed structural model for E23A. Based upon these findings, we hypothesize that further rationale optimization of E23A may result in a promising therapeutic inhibitor for the treatment of inflammatory and autoimmune diseases in which dysregulated activation of the classical and lectin pathways of complement contribute to pathogenesis.

PMID: 20728940 DOI: 10.1016/j.molimm.2010.07.012

(15) Adv Exp Med Biol. 2008;632:237-51.

Human astrovirus coat protein: a novel C1 inhibitor.

AUTHORS:

Krishna NK, Cunnion KM.

ABSTRACT:

C1 is a multimolecular complex that initiates the classical pathway of complement. It is composed of the pattern recognition component C1q and the serine proteases C1r and C1s. Activation of C1 elicits a series of potent effector mechanisms directed at limiting infection by invading pathogens as well as participating in other biological functions such as immune tolerance. While many molecules in addition to antibody have been demonstrated to activate C1, only a handful of C1 inhibitors have been described. Disregulated control of complement activation is associated with numerous autoimmune and inflammatory disease processes, thus tight regulation of C1 activation is highly desirable. We have recently discovered a novel inhibitor of C1, the coat protein of the human astroviruses, a family of enteric pathogens that infect young children. The astrovirus coat protein binds to the A-chain of C1q and inhibits spontaneous as well as antibody-mediated activation of the C1 complex resulting in suppression of classical pathway activation and complement-mediated terminal effector functions. This is the first description of a non-enveloped icosahedral virus inhibiting complement activation and the first description of a viral inhibitor of C1. The known inhibitors of C1 are reviewed and then discussed in the context of this novel viral C1 inhibitor. Additionally, the properties of this compound are elucidated highlighting its potential as an anti-complement therapeutic for the many diseases associated with inappropriate complement activation.

PMID: 19025126

Front Immunol. 2018 Mar 26;9:558 doi: 10.3389/fimmu.2018.00558. eCollection 2018.

Inhibition of Immune Complex Complement Activation and Neutrophil Extracellular Trap Formation by Peptide Inhibitor of Complement C1.

AUTHORS:

Hair PS, Enos AI, Krishna NK, Cunnion KM.

ABSTRACT:

Abstract: Two major aspects of systemic lupus erythematosus (SLE) pathogenesis that have yet to be targeted therapeutically are immune complex-initiated complement activation and neutrophil extracellular trap (NET) formation by neutrophils. Here, we report in vitro testing of peptide inhibitor of complement C1 (PIC1) in assays of immune complex-mediated complement activation in human sera and assays for NET formation by human neutrophils. The lead PIC1 derivative, PA-dPEG24, was able to dose-dependently inhibit complement activation initiated by multiple types of immune complexes (IC), including C1-anti-C1q IC, limiting the generation of pro-inflammatory complement effectors, including C5a and membrane attack complex (sC5b-9). In several instances, PA-dPEG24 achieved complete inhibition with complement effector levels equivalent to background. PA-dPEG24 was also able to dose-dependently inhibit NET formation by human neutrophils stimulated by PMA, MPO, or immune complex activated human sera. In several instances PA-dPEG24 achieved complete inhibition with NETosis with quantitation equivalent to background levels. These results suggest that PA-dPEG24 inhibition of NETs occurs by blocking the MPO pathway of NET formation. Together these results demonstrate that PA-dPEG24 can inhibit immune complex activation of the complement system and NET formation. This provides proof of concept that peptides can potentially be developed to inhibit these two important contributors to rheumatologic pathology that are currently untargeted by available therapies.

PMID: 29632531 PMCID: PMC5879100 DOI: 10.3389/fimmu.2018.00558

PLoS One. 2015 Jul 21;10(7):e0132446. doi: 10.1371/journal.pone.0132446. eCollection 2015.

Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats.

AUTHORS:

Sharp JA, Hair PS, Pallera HK, Kumar PS, Mauriello CT, Nyalwidhe JO, Phelps CA, Park D, Thielens NM, Pascal SM, Chen W, Duffy DM, Lattanzio FA, Cunnion KM, Krishna NK.

ABSTRACT:

The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.

PMID: 26196285 PMCID: PMC4511006 DOI: 10.1371/journal.pone.0132446

(2) Int J Pept. 2017;2017:9454583. doi: 10.1155/2017/9454583. Epub 2017 Sep 10.

Peptide Inhibitor of Complement C1 Inhibits the Peroxidase Activity of Hemoglobin and Myoglobin.

AUTHORS:

Hair PS, Cunnion KM, Krishna NK

ABSTRACT:

Hemoglobin is the natural carrier of oxygen in red blood cells (RBCs). While intracellular hemoglobin provides life-sustaining oxygen transport, extracellular free hemoglobin displays toxicity due to inherent peroxidase activity generating reactive oxygen species that subsequently react with the hemoglobin molecule to produce toxic heme degradation products resulting in free radicals, oxidative stress damage, and lipid peroxidation. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) inhibits peroxidase activity of the heme-based enzyme myeloperoxidase. To elucidate whether PIC1 could inhibit peroxidase activity of hemoglobin, we evaluated the consequence of PIC1 on RBC lysates, methemoglobin, and myoglobin using tetramethylbenzidine (TMB) as an oxidation target. PIC1 reversibly and dose-dependently prevented TMB oxidation to tetramethylbenzidine diimine by RBC lysates, methemoglobin, and myoglobin, having comparable activity to the inhibitor 4-aminobenzoic acid hydrazide. PIC1 inhibited TMB oxidation of RBC lysates similar to L-cysteine suggesting that the two cysteine residues contained in PIC1 may mediate peroxidase activity. PIC1 also inhibited heme destruction by NaOCl for RBC lysates, hemoglobin, and myoglobin as assayed by preservation of the Soret absorbance peak in the presence of NaOCl and reduction in free iron release. In conclusion, PIC1 inhibits peroxidase activity of hemoglobin and myoglobin likely via an antioxidant mechanism.

PMID: 29081812 PMCID: PMC5610871 DOI: 10.1155/2017/9454583

(4) PLoS One. 2017 Jan 20;12(1):e0170500. doi: 10.1371/journal.pone.0170500. eCollection 2017.

Complement Activation and STAT4 Expression Are Associated with Early Inflammation in Diabetic Wounds.

AUTHORS:

Cunnion KM, Krishna NK, Pallera HK, Pineros-Fernandez A, Rivera MG, Hair PS, Lassiter BP, Huyck R, Clements MA, Hood AF, Rodeheaver GT, Cottler PS, Nadler JL, Dobrian AD.

ABSTRACT:

Diabetic non-healing wounds are a major clinical problem. The mechanisms leading to poor wound healing in diabetes are multifactorial but unresolved inflammation may be a major contributing factor. The complement system (CS) is the most potent inflammatory cascade in humans and contributes to poor wound healing in animal models. Signal transducer and activator of transcription 4 (STAT4) is a transcription factor expressed in immune and adipose cells and contributes to upregulation of some inflammatory chemokines and cytokines. Persistent CS and STAT4 expression in diabetic wounds may thus contribute to chronic inflammation and delayed healing. The purpose of this study was to characterize CS and STAT4 in early diabetic wounds using db/db mice as a diabetic skin wound model. The CS was found to be activated early in the diabetic wounds as demonstrated by increased anaphylatoxin C5a in wound fluid and C3-fragment deposition by immunostaining. These changes were associated with a 76% increase in nucleated cells in the wounds of db/db mice vs.

CONTROLS:

The novel classical CS inhibitor, Peptide Inhibitor of Complement C1 (PIC1) reduced inflammation when added directly or saturated in an acellular skin scaffold, as reflected by reduced CS components and leukocyte infiltration. A significant increase in expression of STAT4 and the downstream macrophage chemokine CCL2 and its receptor CCR2 were also found in the early wounds of db/db mice compared to non-diabetic controls. These studies provide evidence for two new promising targets to reduce unresolved inflammation and to improve healing of diabetic skin wounds.

PMID: 28107529 PMCID: PMC5249255 DOI: 10.1371/journal.pone.0170500

(6) Transfusion. 2016 Aug;56(8):2133-45. doi: 10.1111/trf.13674. Epub 2016 Jun 10.

Peptide inhibitor of complement C1 modulates acute intravascular hemolysis of mismatched red blood cells in rats.

AUTHORS:

Kumar PS, Pallera HK, Hair PS, Rivera MG, Shah TA, Werner AL, Lattanzio FA, Cunnion KM, Krishna NK.

ABSTRACT BACKGROUND:

Acute hemolytic transfusion reactions have a broad clinical presentation from mild and transitory signs and symptoms to shock, disseminated intravascular coagulation, renal failure, and death. We have recently developed a rat model of acute intravascular hemolysis showing that the classical complement pathway mediates antibody-dependent hemolysis. The objective of this study was to evaluate the role of the classical pathway inhibitor peptide inhibitor of complement C1 (PIC1) in this animal model.

STUDY DESIGN AND METHODS:

Male Wistar rats received a 15% transfusion of human red blood cells (RBCs) and blood was isolated from the animals up to 120 minutes. Animals received PIC1 either 2 minutes before or 0.5 minutes after transfusion. Sham-, vehicle-, and cobra venom factor (CVF)-treated animals were used as control groups with a subset of rats also receiving an equivalent dose of intravenous immunoglobulin (IVIG) before transfusion. Blood was analyzed for transfused RBC survival by flow cytometry and free hemoglobin (Hb) in isolated plasma by spectrophotometry.

RESULTS:

Vehicle-treated rats showed decreased human RBC survival and increased free Hb as expected. Rats receiving PIC1 before transfusion showed increased human RBC survival and decreased Hb similar to CVF-treated rats. Notably, rats receiving PIC1 after initiation of transfusion showed similar decreases in hemolysis as animals receiving PIC1 before transfusion. Compared to IVIG and saline controls, PIC1-treated animals demonstrated decreased hemolysis and protection from acute kidney injury.

CONCLUSIONS:

These results demonstrate that PIC1 has efficacy in an animal model of acute intravascular hemolysis in both prevention and rescue scenarios.

PMID: 27282513 DOI: 10.1111/trf.13674

(10) Front Immunol. 2014 Aug 22;5:406. doi: 10.3389/fimmu.2014.00406. eCollection 2014.

Peptide inhibitor of complement c1, a novel suppressor of classical pathway activation: mechanistic studies and clinical potential.

AUTHORS:

Sharp JA, Whitley PH, Cunnion KM, Krishna NK.

ABSTRACT:

The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses and an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease, acute intravascular hemolytic transfusion reaction (AIHTR), and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH), is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema, which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibits complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these peptide inhibitors of complement C1 (PIC1) bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s-C1r-C1r-C1s) and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of 15 amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro and inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR.

(12) Mol Immunol. 2013 Jan;53(1-2):132-9. doi: 10.1016/j.molimm.2012.07.012. Epub 2012 Aug 18.

A novel peptide inhibitor of classical and lectin complement activation including ABO incompatibility.

AUTHORS:

Mauriello CT, Pallera HK, Sharp JA, Woltmann JL Jr, Qian S, Hair PS, van der Pol P, van Kooten C, Thielens NM, Lattanzio FA, Cunnion KM, Krishna NK.

ABSTRACT:

Previous experiments from our laboratories have identified peptides derived from the human astrovirus coat protein (CP) that bind C1q and mannose binding lectin (MBL) inhibiting activation of the classical and lectin pathways of complement, respectively. The purpose of this study was to evaluate the function of these coat protein peptides (CPPs) in an in vitro model of complement-mediated disease (ABO incompatibility), preliminarily assess their in vivo complement suppression profile and develop more highly potent derivatives of these molecules. E23A, a 30 amino acid CPP derivative previously demonstrated to inhibit classical pathway activation was able to dose-dependently inhibit lysis of AB erythrocytes treated with mismatched human O serum. Additionally, when injected into rats, E23A inhibited the animals' serum from lysing antibody-sensitized erythrocytes, providing preliminary in vivo functional evidence that this CPP can cross the species barrier to inhibit serum complement activity in rodents. A rational drug design approach was implemented to identify more potent CPP derivatives, resulting in the identification and characterization of a 15 residue peptide (polar assortant (PA)), which demonstrated both superior inhibition of classical complement pathway activation and robust binding to C1q collagen-like tails. PA also inhibited ABO incompatibility in vitro and demonstrated in vivo complement suppression up to 24h post-injection. CPP's ability to inhibit ABO incompatibility in vitro, proof of concept in vivo inhibitory activity in rats and the development of the highly potent PA derivative set the stage for preclinical testing of this molecule in small animal models of complement-mediated disease.

PMID: 22906481 PMCID: PMC3630508 DOI: 10.1016/j.molimm.2012.07.012

(14) Mol Immunol. 2010 Jan;47(4):792-8. doi: 10.1016/j.molimm.2009.10.006. Epub 2009 Nov 6.

Human astrovirus coat protein binds C1q and MBL and inhibits the classical and lectin pathways of complement activation.

AUTHORS:

Hair PS, Gronemus JQ, Crawford KB, Salvi VP, Cunnion KM, Thielens NM, Arlaud GJ, Rawal N, Krishna NK.

ABSTRACT:

Human astroviruses (HAstVs) constitute a family of non-enveloped, RNA viruses which cause infantile gastroenteritis. We have previously demonstrated that purified HAstV coat protein (CP), multiple copies of which compose the viral capsid, bind C1q resulting in inhibition of classical complement pathway activity. The objective of this study was to further analyze the mechanism by which CP inhibits C1 activation. CP inhibited C1 activation, preventing cleavage of C1s to its active form in the presence of heat-aggregated IgG, a potent classical pathway activator. CP also inhibited generation of the potent anaphylatoxin C5a. CP dose-dependently bound to C1q, the isolated globular heads and the collagen-like regions of the C1q molecule. When CP was added to C1, C1s dissociated from C1q suggesting that CP functionally displaces the protease tetramer (C1s-C1r-C1r-C1s). Given the structural and functional relatedness of C1q and MBL, we subsequently investigated the interactions between CP and MBL. CP bound to purified MBL and was able to inhibit mannan-mediated activation of the lectin pathway. Interestingly, CP did not bind to a variant of MBL that replaces a lysine residue (Lys55) critical for binding to MASP-2, a functional homolog of C1s. Finally, CP was shown to cross the species barrier to inhibit C3 activation and MAC formation in rat serum. These findings suggest CP inhibits C1 and MBL activation via a novel mechanism of interference with the normal interaction of the recognition molecule with its cognate serine proteases.

PMID: 19896716 DOI: 10.1016/j.molimm.2009.10.006

(16) J Virol. 2008 Jan;82(2):817-27. Epub 2007 Oct 24.

Human astrovirus coat protein inhibits serum complement activation via C1, the first component of the classical pathway.

AUTHORS:

Bonaparte RS, Hair PS, Banthia D, Marshall DM, Cunnion KM, Krishna NK.

ABSTRACT:

Human astroviruses (HAstVs) belong to a family of nonenveloped, icosahedral RNA viruses that cause noninflammatory gastroenteritis, predominantly in infants. Eight HAstV serotypes have been identified, with a worldwide distribution. While the HAstVs represent a significant public health concern, very little is known about the pathogenesis of and host immune response to these viruses. Here we demonstrate that HAstV type 1 (HAstV-1) virions, specifically the viral coat protein (CP), suppress the complement system, a fundamental component of the innate immune response in vertebrates. HAstV-1 virions and purified CP both suppress hemolytic complement activity. Hemolytic assays utilizing sera depleted of individual complement factors as well as adding back purified factors demonstrated that HAstV CP suppresses classical pathway activation at the first component, C1. HAstV-1 CP bound the A chain of C1q and inhibited serum complement activation, resulting in decreased C4b, iC3b, and terminal C5b-9 formation. Inhibition of complement activation was also demonstrated for HAstV serotypes 2 to 4, suggesting that this phenomenon is a general feature of these human pathogens. Since complement is a major contributor to the initiation and amplification of inflammation, the observed CP-mediated inhibition of complement activity may contribute to the lack of inflammation associated with astrovirus-induced gastroenteritis. Although diverse mechanisms of inhibition of complement activation have been described for many enveloped animal viruses, this is the first report of a nonenveloped icosahedral virus CP inhibiting classical pathway activation at C1.

PMID: 17959658 PMCID: PMC2224607 DOI: 10.1128/JVI.01847-07
Loading...