Our science


Incompatible Erythrocyte Transfusion With Lipopolysaccharide Induces Acute Lung Injury In A Novel Rat Model

PLoSONE 15(4):e0230482.. doi.org/10.1371/journal.pone.0226875 eCollection 2019


Acute transfusion reactions can manifest in many forms including acute hemolytic transfusion reaction, allergic reaction and transfusion-related acute lung injury. We previously developed an acute hemolytic transfusion reaction rat model mediated by transfusion of incompatible human erythrocytes against which rats have preexisting antibodies resulting in classical complement pathway mediated intravascular hemolysis. In this study, the acute hemolytic transfusion reaction model was adapted to yield an acute lung injury phenotype. Adolescent male Wistar rats were primed in the presence or absence of lipopolysaccharide followed by transfusion of incompatible erythrocytes. Blood was collected at various time points during the course of the experiment to determine complement C5a levels and free DNA in isolated plasma. At 4 hours, blood and lung tissue were recovered and assayed for complete blood count and histological acute lung injury, respectively. Compared to sham animals or animals receiving increasing amounts of incompatible erythrocytes (equivalent to a 15–45% transfusion) in the absence of lipopolysaccharide, lungs of animals receiving lipopolysaccharide and a 30% erythrocyte transfusion showed dramatic alveolar wall thickening due to neutrophil infiltration. C5a levels were significantly elevated in these animals indicating that complement activation contributes to lung damage. Additionally, these animals demonstrated a significant increase of free DNA in the blood over time suggestive of neutrophil extracellular trap formation previously associated with transfusion-related acute lung injury in humans and mice. This novel ‘two-hit’ model utilizing incompatible erythrocyte transfusion in the presence of lipopolysaccharide yields a robust acute lung injury phenotype.


More Abstracts

Mar 28, 2018

Inhibition of Immune Complex Complement Activation And Neutrophil Extracellular...

Abstract: Two major aspects of systemic lupus erythematosus (SLE) pathogenesis that have yet to be targeted therapeutically are immune complex-i...

Read More
Dec 31, 2019

Inhibition of Complement Activation, Myeloperoxidase, NET Formation And Oxidant...

A product of rational molecular design, PA-dPEG24 is the lead derivative of the PIC1 family of peptides with multiple functional abilities inclu...

Read More
Jun 21, 2015

Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement...

The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently...

Read More