Our science

Abstracts

Inhibition of Complement Activation, Myeloperoxidase, NET Formation And Oxidant Activity By PIC1 Peptide Variants

PLoS ONE 14(12). 2019 December 31;e0226875. doi.org/10.1371/journal. pone.0226875 eCollection 2019

ABSTRACT BACKGROUND:

A product of rational molecular design, PA-dPEG24 is the lead derivative of the PIC1 family of peptides with multiple functional abilities including classical complement pathway inhibition, myeloperoxidase inhibition, NET inhibition and antioxidant activity. PA-dPEG24 is composed of a sequence of 15 amino acid, IALILEPICCQERAA, and contains a monodisperse 24-mer PEGylated moiety at its C terminus to increase aqueous solubility. Here we explore a sarcosine substitution scan of the PA peptide to evaluate impacts on solubility in the absence of PEGylation and functional characteristics.

METHODS:

Sixteen sarcosine substitution variants were synthesized and evaluated for solubility in water. Aqueous soluble variants were then tested in standard complement, myeloperoxidase, NET formation and antioxidant capacity assays.

RESULTS:

Six sarcosine substitution variants were aqueous soluble without requiring PEGylation. Substitution with sarcosine of the isoleucine at position eight yielded a soluble peptide that surpassed the parent molecule for complement inhibition and myeloperoxidase inhibition. Substitution with sarcosine of the cysteine at position nine improved solubility, but did not otherwise change the functional characteristics compared with the parent compound. However, replacement of both vicinal cysteine residues at positions 9 and 10 with a single sarcosine residue reduced functional activity in most of the assays tested.

CONCLUSIONS:

Several of the sarcosine PIC1 variant substitutions synthesized yielded improved solubility as well as a number of unanticipated structure-function findings that provide new insights. Several sarcosine substitution variants demonstrate increased potency over the parent peptide suggesting enhanced therapeutic potential for inflammatory disease processes involving complement, myeloperoxidase, NETs or oxidant stress.

PMID: 31891617 PMCID: PMC6938345 DOI: 10.1371/journal.pone.0226875

More Abstracts

Aug 20, 2020

Incompatible Erythrocyte Transfusion With Lipopolysaccharide Induces Acute Lung Injury...

Acute transfusion reactions can manifest in many forms including acute hemolytic transfusion reaction, allergic reaction and transfusion-related...

Read More
Mar 28, 2018

Inhibition of Immune Complex Complement Activation And Neutrophil Extracellular...

Abstract: Two major aspects of systemic lupus erythematosus (SLE) pathogenesis that have yet to be targeted therapeutically are immune complex-i...

Read More
Jun 21, 2015

Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement...

The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently...

Read More